
Making Rewards More Rewarding: Sequential Learnable
Environments for Deep Reinforcement Learning-based

Sponsored Ranking
Chen Wang∗

Rutgers University
New Brunswick, United States
chen.wang.cs@rutgers.edu

Aidan Finn
Overstock.com

Midvale, United States
afinn@overstock.com

Nishan Subedi
Overstock.com

Midvale, United States
nsubedi@overstock.com

ABSTRACT
Reinforcement Learning (RL) methods have risen in popularity
among general ranking systems. However, despite having proper-
ties suitable for sponsored ranking problems, Reinforcement Learn-
ing methods remain under explored in this area. A major reason
behind this gap is the dilemma of exploration: random exploration
is prohibitively expensive in sponsored search ranking, with the
potential to cause significant revenue loss. To address this concern,
we study properties of a simulated environment for Reinforcement
Learning in sponsored ranking. We demonstrate that by augment-
ing a learnable simulated environment based on intuitive design
principles, we can significantly improve RL performances and boost
the explainability of the model. We test our method with a Deep
Deterministic Policy Gradient agent, and experimental results show
our learned simulated environment outperforms existing methods.
Furthermore, since our method is agent agnostic, it paves the way
to a wide range of Reinforcement Learning applications to the
sponsored ranking problem.

CCS CONCEPTS
• Information systems→ Sponsored search advertising;Elec-
tronic commerce; • Computing methodologies→ Reinforce-
ment learning.

KEYWORDS
reinforcement learning, sponsored search, ranking

ACM Reference Format:
Chen Wang, Aidan Finn, and Nishan Subedi. 2021. Making Rewards More
Rewarding: Sequential Learnable Environments for Deep Reinforcement
Learning-based Sponsored Ranking. In AdKDD ’21: Workshops of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August
14-18, 2021, Singapore. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/1122445.1122456

∗Most of the work was done when the author was at Overstock.com.

All authors contributed equally to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AdKDD ’21, August 14–18, 2021, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Reinforcement Learning (RL) is a class of machine learning meth-
ods that optimize their performance by exploring and receiving
rewards from their environment [19]. In recent years, due to the
expressive power of Deep Reinforcement Learning (DRL), RL has
become widely adopted for various prediction and decision-making
problems. In the field of ranking, RL has been extensively stud-
ied under various contexts like recommendation systems [12, 22],
web search results [2], document filtering [21], among others. RL
methods are especially effective when the ranking is dynamic and
interactive [1, 7, 15] (i.e. the items and the user’s demand evolve
over time).

In sponsored search ranking, a marketplace platform is presented
with a list of advertisements and the goal is to determine the order
of the advertisements to be displayed. A common approach is to
combine advertiser bid and expected Click-Through-Rate (CTR)
in a second-price auction, where the winning advertisements are
charged the minimum amount needed to keep their position. In
general, higher ranking ads should have both a higher bid and a
higher probability of being clicked. While the former metric is easy
to examine, the latter one depends largely on the advertisement’s
relevance to the search and the user’s preference. Furthermore, the
participants in an auction are determined by the goal of the adver-
tisers, which may vary with each campaign, and budget available
for each item at the time the auction changes. Given this dynamic
nature of sponsored search ranking, RL-based approaches are at-
tractive.

There is existing work that utilizes novel ideas to make RL-based
sponsored search ranking feasible. He et al. [4] designs amechanism
to compute the rank score as a sum of the scores for the platform,
user and advertiser (see also [5]). From the generalized second price
auction mechanism, one can use the score of the advertisement
ranked below the current item to compute the reward. In this way,
the ‘environment’ could provide rewards to any action, enabling
exploration in the sponsored search ranking context.

He et al. [4] describes a ranking strategy formulation that cap-
tures the general goal of sponsored ranking systems. An actor-critic
deep reinforcement learner runs on a simulated environment to
allow exploration which is deployed in an online setting using an
evolution strategy to update the parameters of the policy model.
However, when we tried to implement the offline Deep Determin-
istic Policy Gradient (DDPG) Learning algorithm based on our
internal sponsored ranking logs, we found the performance of the
model to be unstable 1. This led us to investigate ways to improve
1When evaluated on sponsored search ranking data from Overstock.com.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

AdKDD ’21, August 14–18, 2021, Singapore Wang, Finn and Subedi

the environment model that can facilitate better effectiveness and
consistency between the RL goal and improved ranking quality.

In this paper we show that the environment and ranking score
model of [4] can be improved in two ways: 1. by increasing the
expressive power of the model; and 2. by introducing rule-induced
consistency in reward design. We introduce a new mechanism
such that the ranking function is trained by a sequential learnable
environment based on user engagement. Our contributions are
generally applicable since the sequential learnable environment
model is agent agnostic, and the changes introduced in our model
require no domain specific parameters to be tuned.

We test our model on real-world sponsored search ranking
data from Overstock.com. To draw comparisons with existing ap-
proaches and show the effectiveness of our design, we also test
the performance of other models, including the original model pro-
posed in [4] and the classical CTR-based model, on the same dataset
and with the same type of the DDPG agent. Experimental results
show that the agent with the environment proposed in this paper
outperforms other methods and offers more consistent learning
signals.

2 RELATEDWORK
The idea of applying RL to ranking system has received consider-
able attention in the era of deep reinforcement learning [19]. RL
has been successfully deployed on search engine optimization [7],
recommendation systems [8], advertisement displaying [11], and
advertisement retrieval and pre-ranking [20]. In particular, the prob-
lem [20] studied falls into the earlier stages of sponsored search
ranking, and it built a sequential and learnable neural network to
produce the results. Note that capturing the sequential information
is often crucial in the application of advertisement click data (see
[10]). Therefore, our approach extends the idea of [20]: we similarly
build a sequential and learnable neural network as a generic part of
the environment; the difference is that the neural network in our
method is adopted to produce the embedding of the advertisements.

3 OUR METHOD
In standard RL applications, the goal is often to design and imple-
ment the agent, while the environment information is obtained via
exploration. However, exploration becomes prohibitively expensive
in sponsored search ranking. This makes the often-trivial environ-
ment model a major design challenge. To address this challenge we
build our method based on the idea of the environment model in
[4]. Our contribution is to provide a thorough treatment to the un-
derstanding of the environment model, and suggest improvements
to the model based on our findings.

3.1 Review of the Simulated Environment
Model

The central idea of the environment model in [4] is to use the
inverse of the ranking function to generate the click prices and the
rewards. The ranking function used in [4] follows:

𝜙 (𝑎𝑑, 𝒂) = 𝑏𝑖𝑑 · 𝑓𝑎1 (𝐶𝑇𝑅)+𝑎2 · 𝑓𝑎3 (𝐶𝑉𝑅, 𝐶𝑇𝑅)+𝑎4 · 𝑓𝑎5 (𝐶𝑉𝑅, 𝑝𝑟𝑖𝑐𝑒),
(1)

where 𝒂 = [𝑎1, · · · , 𝑎5] parameterize the output of the learning
agent (actions), and 𝑓𝑎 (·) : R→ R are monotonic non-linear func-
tions. As standard in the sponsored search ranking literature, CTR
and CVR stand for the Click Through Rate and the Conversion Rate.
The values of 𝑎𝑖 are non-negative and bounded by some positive
number. By solving the inverse of Eq (1), one can compute the click
price, which is proportional to the reward. With the second price
auction mechanism, the prediction of the click price is

𝜓 (𝑎𝑑, 𝒂) = 𝑎2 · 𝑓𝑎3 (𝐶𝑉𝑅, 𝐶𝑇𝑅) + 𝑎4 · 𝑓𝑎5 (𝐶𝑉𝑅, 𝑝𝑟𝑖𝑐𝑒);

click-price𝑝𝑟𝑒𝑑 =
𝜙 (𝑎𝑑 ′, 𝒂) −𝜓 (𝑎𝑑, 𝒂)

𝑓𝑎1 (𝐶𝑇𝑅)
.

(2)

In the above equation, 𝑎𝑑 ′ stands for the advertisement that is
ranked second to the clicked advertisement (𝑎𝑑), and the click price
is the minimum value required to maintain position in the auction.
A natural notion of reward can therefore be defined as

𝑟 = click-price𝑝𝑟𝑒𝑑 ·𝐶𝑇𝑅. (3)

Note that in the model [4], the reward of Eq (3) is ‘smoothed’ as
𝑟 =

(
click-price𝑝𝑟𝑒𝑑 ·𝐶𝑇𝑅 +𝛿 ·𝐶𝑇𝑅

)
, where 𝛿 is a hyper-parameter

to be specified. We believe that although the parameter helps the
performance, the choice of its value is not transferable to a general
context and does not help in terms of understanding the environ-
ment model. We therefore omit the 𝛿 factor in this work.

3.2 Our Model: The Improved Simulated
Environment

We now address the core problem posed and addressed by this pa-
per: what makes a good simulated environment for Reinforcement
Learning on sponsored search applications, and how can we im-
prove the environment model? We present design decisions based
on intuitive principles that we found [4] was unable to consistently
address.

The proposed model has two major distinct components: the
sequential trainable embedding for the environment and the sample-
adaptive click price calculation mechanism. Specifically, the first
component enables the environment to capture the sequential in-
formation between clicks, and the second component introduces
the separation between positive and negative examples. Notice-
ably, although the designs can be viewed as ‘revisions’ of [4], we
demonstrate that these changes lead to significant gains.

We begin with introducing the sequential trainable model. The
idea of this environment is to two-fold: for the sequential part, we
adopt a Recurrent Neural Network (RNN) structure (with Gated
Recurrent Unit (GRU) cells); for the trainable part, the prediction
of the click price is a function of the output of the RNN. There-
fore, by setting a loss function between predicted and the real click
price, one can train the parameters of the RNN by standard back-
propagation. We note that the idea has been explored in [20] for
sponsored search ranking applications. Moreover, we remark that
previous work has shown that a learned environment is particularly
well suited to ranking tasks since sequence models gain statisti-
cal power by aggregating across multiple individual engagements
[6, 14]. An illustration of the model we adopted can be shown as
Figure 1.

Making Rewards More Rewarding: Sequential Learnable Environments for Deep Reinforcement Learning-based Sponsored Ranking AdKDD ’21, August 14–18, 2021, Singapore

Figure 1: The framework of the trainable environment.

We now describe the details of the method. For a given session
of consecutive clicks, at each step, the state transitions of the RNN
are computed as

𝒔𝑡 = GRU(𝒔𝑡−1; 𝒒𝑡 ; 𝒛𝑡 ;CTR;CVR;𝑏𝑖𝑑). (4)

Note that we slightly abuse the notation to use CTR, CVR and bid
to denote the corresponding values in the 𝑡-th step. In Eq (4), 𝒔𝑡−1
is the internal state of the GRU-RNN model from the previous step;
𝒒𝑡 is the embeddings of the query; 𝒛𝑡 is the feature embedding of
the advertisement, and the last 3 terms are the meta-information.
When calculating the reward with Eq (2), the RNN model provides
the hidden state embedding of the 𝑡-th click as an additional fea-
ture (denoted as 𝒔𝑡). The computation of the ranking function will
therefore be updated as

𝜙 (𝑎𝑑, 𝒂) =𝑏𝑖𝑑 · 𝑓𝑎1 (𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡) + 𝑎2 · 𝑓𝑎3 (𝐶𝑉𝑅,𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡)
+ 𝑎4 · 𝑓𝑎5 (𝐶𝑉𝑅, 𝑝𝑟𝑖𝑐𝑒, 𝒔𝑡 , 𝒛𝑡),

(5)

which means, in addition to the meta information like the CTR and
CVR, the features of each product, embedded as the hidden states of
the RNN, are also taken into account to compute the predicted click
price. Eq (5) inevitably increases the dimension of the input space
to R>1, which makes it incompatible with the non-linear functions
𝑓𝑎 : R→ R. This issue can be easily addressed by projecting the
input to a scalar with a projection vector𝒘 . Note that𝒘 can also be
part of the learnable parameters by the standard back-propagation.

We then compute the click price as the inverse of the ranking
function (as in [4]), and on the top of the original formula, we
further introduce a scaling parameter as a non-linear projection
from the hidden state 𝒔𝑡 . This parameter helps ‘calibrate’ the range
of the click price, and the prediction of the click price becomes

𝜓 (𝑎𝑑, 𝒂) = 𝑎2 · 𝑓𝑎3 (𝐶𝑉𝑅,𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡) + 𝑎4 · 𝑓𝑎5 (𝐶𝑉𝑅, 𝑝𝑟𝑖𝑐𝑒, 𝒔𝑡 , 𝒛𝑡);

price =
𝜙 (𝑎𝑑 ′, 𝒂) −𝜓 (𝑎𝑑, 𝒂)
𝑓𝑎1 (𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡)

;

click-price𝑝𝑟𝑒𝑑 = sigmoid(𝒔𝑇𝑡 𝒘scale) · price.
(6)

where𝒘scale is the parameter (linearweights) for the transformation.
One can therefore train the parameter𝒘scale together with the RNN
model by regressing the prediction of the clicked price to the real
click prices using square loss.

L𝑅𝑁𝑁 = ∥click-price𝑝𝑟𝑒𝑑 − click-price∥22 . (7)
With the above steps, we have introduced the ability to capture
sequential information to the simulated environment, and the learn-
ing signal is more precise since the model can update itself by
learning from the real click prices. In order to further improve the
environment model, the model has to further satisfy the following
properties: the ability to separate positive and negative samples,
ensure consistency of the learning signal, and the interpretability
of the model. In the rest of this section, we introduce changes to
the model to satisfy these requirements, and present our model in
its entirety.

3.2.1 Separating positive and negative signals. We first ensure that
learning signals for positive and negative samples are clearly dis-
tinguishable. Intuitively, a desired environment should be able to
provide distinct signals between advertisements that are more likely
to be clicked and those that are not given a particular context. We
can thus leverage information on whether an advertisement was
clicked or not to determine if a sample is positive or negative.
This information is readily available for offline training based on
interaction logs from the production sponsored ranking system;
furthermore, during the online prediction, we do not require the
status of click as an input.

We introduce the following difference in behavior for positive
and negative samples based on whether a click occurred to the
model:
• We first clip the prediction of click price of the positive and
negative samples into different ranges. For negative samples, we
allow prediction of the click price to become negative; however,
for positive samples, it is not desired to have negative click prices
(and rewards). Therefore, for the positive samples, we clip the
click price to no lower than 0.

• We then encourage 𝒂 values to increase for the positive samples.
Since 𝑓𝒂 (·) is monotonic, this separation helps the environment to
provide ranking values that favor the clicked advertisements. We
observe that since the reward can be negative, to avoid negative
signals, the agent tends to make all the 𝒂 values close to 0. To
address this, we introduce a normalization term to explicitly
encourage increment of 𝒂 values for the positive samples. With
this term, the reward for the positive samples becomes

𝑟 = click-price𝑝𝑟𝑒𝑑 ·𝐶𝑇𝑅 + _
∥𝒂∥

∥𝒂𝑚𝑎𝑥 ∥ , (8)

where _ is an interpolation factor, and 𝒂𝑚𝑎𝑥 is the upper-bound
of the values of the vector (recall that the value of 𝒂𝑖 is bounded
between 0 and a positive number).

3.2.2 Improving the consistency of the learning signal. Another
important aspect of our goals is to increase the consistency between
the learning signal and the goal of learning. We observe that the
reward computed by Eq (2) can be negative; and when this happens,
the reward signal cannot keep consistent with the learning goal.
To see this, consider the case when click-price𝑝𝑟𝑒𝑑 < 0. To keep
the learning goal consistent, the monotonic nature nature of 𝑓𝒂 (·)
requires that we decrease the 𝒂 values when the advertisement
is negative. However, the prediction of the reward is controlled
by Eq (6) which means that the agent can increase the reward by

AdKDD ’21, August 14–18, 2021, Singapore Wang, Finn and Subedi

increasing the value of 𝑎1. Learning this behavior undermines the
agent’s ability to reward consistently.

To remedy this issue, we provide a further treatment for the
negative samples with a negative reward (note that the rewards of
the positive samples are already clipped to be non-negative). We
define raw-click-price as 𝜙 (𝑎𝑑 ′, 𝒂) −

(
𝑎2 𝑓𝑎3 (𝐶𝑉𝑅,𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡)

+𝑎4 𝑓𝑎5 (𝐶𝑉𝑅, 𝑝𝑟𝑖𝑐𝑒, 𝒔𝑡), 𝒛𝑡
)
, and when it is less than 0, the prediction

of the click price is computed as

NM(𝑎1) =
𝑓𝑎1 (𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡)
𝑓𝑎𝑚𝑖𝑛

1
(𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡)

click-price𝑝𝑟𝑒𝑑 = sigmoid(𝒔𝑇𝑡 𝒘scale) ·
(
raw-click-price − NM(𝑎1)

)
𝑓𝑎𝑚𝑎𝑥

1
(𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡)

,

(9)
Note that in the new form, the denominator is fixed, and the incre-
ment of 𝑎1 value decreases the reward. In this case, the agent will
learn to decrease 𝑎1, which is consistent with the goal of learning.
Besides, note that in Eq (9), we divide the value of 𝑓𝑎1 (𝐶𝑇𝑅, 𝒔𝑡)
by 𝑓𝑎𝑚𝑖𝑛

1
(𝐶𝑇𝑅, 𝒔𝑡) to make sure the contribution of 𝑓𝑎1 does not

vanish when its numerical scale is small; and we put the denomina-
tor as 𝑓𝑎𝑚𝑎𝑥

1
(𝐶𝑇𝑅, 𝒔𝑡) to make sure the quantity of the click price

prediction lies in the same scale with other samples.

3.2.3 Connections with the CTR-based model as a base case. The
ranking function should ideally be able to connect to the CTR-based
model for the purpose of interpretability. To this end, the following
approaches are feasible: 1. pick a non-linear function such that
𝑓𝑎1=0 (𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡) = 𝐶𝑇𝑅,; and 2. pick a non-linear function such
that 𝑓𝑎1=0 (𝐶𝑇𝑅, 𝒔𝑡 , 𝒛𝑡) = 1.0, and put a 𝐶𝑇𝑅 multiplicative factor
ahead of the first term of Eq (5). Note that by either of the above
strategies, Eq (5) returns the CTR value when all the 𝑎 values are 0.
That is to say, if the agent does not learn at all, then the rewards of
the model is determined by𝐶𝑇𝑅 · 𝑏𝑖𝑑 . This allows for environment
model to be rolled out in a production context under the same
conditions as the CTR-based policy. If the agent learns anything, it
can be viewed as adjustments on the top of the CTR-based method.
In practice, we adopt the swish activation function as the non-linear
function of 𝑓𝑎1 (·) [16], which follows the first type of approaches
as above.

Finally, apart from the above major features, we also design a
mechanism to balance the numerical terms in the ranking function.
Note that the ranking function of Eq (5) is a summation of 3 terms.
In practice, we found it is important to bound the price input for
𝑓𝑎5 (.), as the scale of such a term can overwhelm other terms. Hence,
we use logarithmic scale for input price. We remark that in [4], a
similar form of calibration was adopted.

The overall algorithm. Taking these together, the algorithm for the
environment model can be represented as Algorithm 1.

3.3 The DDPG Reinforcement Learning Agent
We now briefly introduce the DDPG model, which is the RL Agent
adopted in this paper (also in [4]). The section is self-contained,
and we assume the readers already have in-depth knowledge of RL.
Due to space limit, we only include the outline and the justification
of the method. For an in-depth introduction to RL, keen readers

Algorithm 1: The algorithm for the environment model.
Initialize the RNN-GRU model GRU(·) randomly;
// training of the environment

for each epoch do
for each batch do

Compute the click price with Eq (9) with fixed 𝒂 = 0
or random 𝒂 vectors;

Train the GRU model with loss Eq (7);

// Reinforcement Learning environment

for each action 𝒂 by the RL agent do
Return click price by Eq (9) with given 𝒂 and the state 𝒔𝑡 ;
Clip the click price by ranges;
Compute the reward 𝑟 with Eq (8), and retrieve 𝒔𝑡+1
from the GRU model;
Return 𝑟 and 𝒔𝑡+1 to the agent;

// Reinforcement Learning training
Train the Deep Deterministic Policy Gradient
Reinforcement Learning in the standard manner ([18]);

// Prediction and Production phase

for each session do
Initialize 𝒔𝑡 = 0 ;
for each advertisement item do

Obtain 𝒂 by inputting 𝒔𝑡 , 𝒛𝑡 , and the
meta-information to the RL agent ;
Compute the ranking score for the item by Eq (5) ;
Update 𝒔𝑡 by Eq (4) ;

Rank the items by the ranking scores;

can refer to [19]; and [13] contains a more detailed treatment to
the DDPG model.

Similar to many policy gradient methods, the DDPG method
adopts the actor-critic structure, and it outputs actions as determin-
istic values, and optimize the loss function

L :=
1
𝑁

𝑁∑
𝑡=1

(
𝑄𝜙 (𝒔𝑖 , 𝒂𝑖) − (𝑟 (𝒔𝑖 , 𝒂𝑖) + 𝛾 max

\
𝑄𝜙 (𝒔𝑖+1, `\ (𝒔𝑖+1)))

)2
.

(10)
Note that when 𝑖 = 𝑁 , 𝒔𝑖+1 is not well defined, so we simply use
(𝑄𝜙 (𝒔𝑖 , 𝒂𝑖) − 𝑟 (𝒔𝑖 , 𝒂𝑖))2 for this specific step.

We note that the learningmethod in [4] also adoptsmultiple asyn-
chronous agents to jointly learn the DDPG target. In our method,
we did not implement this part as it is much more expensive than
the single-agent scenario. We also omit the online learning part of
the agent in [4] since it is based on coordinate-wise heuristic and it
does not provide insights for competent RL environments.

We also remark that the DDPG method is appropriate for this
task. We can first rule out any model-based approach, since the
complexity of the environment for sponsored search ranking ren-
ders the model-based approaches ineffective. Among the model-free
RL algorithms, the available options are the value-based (e.g. Q-
learning) and the policy gradient-based methods. Since the action
vector 𝒂 in our case is continuous, it is unclear how to optimize it
(see [17] for more insights). Therefore, the most realistic path is

Making Rewards More Rewarding: Sequential Learnable Environments for Deep Reinforcement Learning-based Sponsored Ranking AdKDD ’21, August 14–18, 2021, Singapore

to find our method from the policy gradient-based algorithms like
DDPG.

4 EXPERIMENT
The main contribution and novelty of our paper lie presenting a set
of principles for the design of the environment. Our experiments
focus on showing the advantages of these design principles on
ranking performance. By comparing our environment model against
the original one in [4] we can examine the contribution of the design
in Section 3.2 to performance.

We adopt the DDPG method to ensure a fair comparison. Note
that compared to the agent used in [4], we omit many enhancements
to the learning agents such as multi-agent learning and dueling
under both of the environment models. Therefore, the fairness of
comparison is not negatively affected since the same type of agent
(without the enhancements) is applied across the environments.
Furthermore, the enhancements of the agent in [4] are independent
from the environment model, which means it should contribute
equally to the agent under different environments. In addition, He
et al. [4] outlines the primary need for an online update to the
inconsistency between the real online environment and the offline
one due to dynamic distribution and sequential correlation between
the continuous user behavior. Our model remedies these issues
without an online learning component. Therefore, we determine
the online learning characteristics of our model an important future
area of study to determine if further work is required.

Data and evaluation metrics. We use real sponsored search auction
data from the Overstock.com to perform experiments. We train on
7 days of sponsored search auctions and evaluate on 1 day. We train
the model with the policy network as a 25-layer ResNet (see [3])
and the value network as the 2-layer fully-connected MLP. Ranking
during the testing phase is performed in the following way: for any
advertisement items, we can obtain the action vector 𝒂 by passing
the item to the environment model; we then compute the ranking
score with Eq (5), and use this score to rank items in each auction.

We use NDCG to evaluate our rankings [9]. To get results that are
as unbiased as possible, we use simulated clicks as the ground truth.
For evaluation we rerank all auctions from one day and simulate
clicks on the reranked auction results using historical CTR at each
position. We then calculate NDCG using the simulated clicks. A
better comparison with the online click results can be an interesting
direction to explore in the future.

Results. We test our environment model against the original one
(as in [4] and without any components in Section 3.2) and a ran-
domly initialized model. The latter comparison is included to justify
the validity of learning in the environment model. Furthermore,
we compare our model against several other ranking methods, in-
cluding Bid, smoothed Purchase Rate, AdRank (Bid * CTR) and
smoothed CTR. The results are summarized in Table 1 (numerical
precision rounded to 10−4). The features of each advertisement in-
clude smoothed hierarchical engagement rates for clicks, cart adds
and purchases across categories and partners, along with query
and product embeddings built from Overstock historical click data.

From the table, it can be found that the model with the trained
new environment provides the most competitive performance. We

Table 1: Ranking performance for different methods.

Ranking Method NDCG Click

Bid 0.0458
Purchase Rate 0.0485
AdRank 0.0530
CTR 0.0534
RL + original env ([4]) 0.0530
RL + random new env (no training) 0.0529
RL + new env 0.0558

also observe that the randomly-initialized environment performs
almost identically to the original environment, while the trained
environment considerably outperforms the latter. This highlights
the crucial role of learning in the environmental model.

The importance and effectiveness of learning in the environ-
mental model can also be shown by the progress made by training.
Specifically, we show in Figure 2 the loss curve for training the
GRU model with the loss function Eq (7). From the curve, it can be
found that the ℓ2 loss declines drastically, indicating that the quality
of the reward prediction before and after training are considerably
different. Moreover, as we can see in Table 2, the ranking quality
gradually improves as the number of training epochs of the envi-
ronment increases. This also validates the claim that a trainable
environment model achieves superior performances.

Figure 2: The curve for the loss function Eq (7) of the envi-
ronment model. The data is obtained with 50 runs (expect
a few unconverged records), and the y-axis is re-scaled by
logarithm.

Table 2: Ranking performance for the environment model
trained at different epochs. The most relevant set of

features are used.

Training Epochs NDCG Click percentage change

0 0.0529 –
1 0.0523 -1.13%
2 0.0530 +0.19%
5 0.0531 +0.38%
9 0.0536 +1.32%
14 0.0541 +2.27%
15 0.0558 +5.48%

AdKDD ’21, August 14–18, 2021, Singapore Wang, Finn and Subedi

Apart from the ranking performance, we can also examine the
improvement of the environment model from the perspective of
the training of the Reinforcement Learning agent. We can illustrate
the reward curve of the same DDPG agent under different envi-
ronments as in Figure 3. From the figure, it can be observed that
the agent under the original environment suffers from negative re-
wards; in contrast, the agent under the trained environment model
can achieve relatively stable increments on the rewards. Note that
Figure 3 is a good reference for both the difficulty for the agent to
learn and the consistency of the reward signals.

Figure 3: The average rewards of the agent for every 10
episodes. Note that the reward for original method is re-
scaled for illustration purpose.

We conclude this section by noting that the experimental results
in this section do not invalidate the effectiveness of the original
environment model in [4]. Compared to the work of [4], our data is
significantly different. More importantly, the agent in [4] is far more
complicated (although still under the DDPG framework) and many
effective heuristic methods are not adopted in our agent. Again,
the purpose of the experiments is to show the effectiveness of the
modifications we introduced to the environment model.

5 CONCLUSION
In this paper, we study the challenges and strategies for RL when
deployed on sponsored search ranking problems. We highlight the
key challenge of environment exploration in this setting and the
necessity of using simulated environment models. Subsequently,
we adopt the idea of [4] for the simulated environment models, and
propose several important changes, which lead to a sequential and
learnable environment model with enhanced properties. We test the
proposed model on real-life production data from Overstock.com,
and empirical results validate the improved performance of the new
model.

In future work, we will focus on real-world deployment of the
RL model. In an online production setting, re-training the sequen-
tial learnable model can be done in batch periodically to keep the
environment and actor-critic models up-to-date.

In conclusion, the paper makes two significant contributions to
the area of sponsored search ranking. Firstly, the proposed new
environment model offers better performance and higher-quality
learning signals for RL agents, and it can be widely adopted in
this area. Secondly, it proposes several principles for RL-based
sponsored ranking environments, which contributes to our general
understanding of the ways RL is used in the area.

REFERENCES
[1] Maarten de Rijke. 2019. Reinforcement learning to rank. In Proceedings of the

Twelfth ACM International Conference on Web Search and Data Mining. 5–5.
[2] Vali Derhami, Elahe Khodadadian, Mohammad Ghasemzadeh, and Ali Moham-

mad Zareh Bidoki. 2013. Applying reinforcement learning for web pages ranking
algorithms. Applied Soft Computing 13, 4 (2013), 1686–1692.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[4] Li He, Liang Wang, Kaipeng Liu, Bo Wu, and Weinan Zhang. 2018. Optimizing
Sponsored Search Ranking Strategy by Deep Reinforcement Learning. arXiv
preprint arXiv:1803.07347 (2018).

[5] Li He, Liang Wang, Kaipeng Liu, and Weinan Zhang. 2018. Deep Policy Opti-
mization for E-commerce Sponsored Search Ranking Strategy. In Proceedings of
the 2018 AdKDD and TargetAd.

[6] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[7] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-
ment learning to rank in e-commerce search engine: Formalization, analysis, and
application. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 368–377.

[8] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Morgane Lustman, Vince Gatto, Paul Covington, et al. 2019.
Reinforcement learning for slate-based recommender systems: A tractable de-
composition and practical methodology. arXiv preprint arXiv:1905.12767 (2019).

[9] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[10] Shihao Ji, Ke Zhou, Ciya Liao, Zhaohui Zheng, Gui-Rong Xue, Olivier Chapelle,
Gordon Sun, and Hongyuan Zha. 2009. Global ranking by exploiting user clicks.
In Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval. 35–42.

[11] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang. 2018.
Real-time bidding with multi-agent reinforcement learning in display advertising.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 2193–2201.

[12] Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. 2013. Learning to rank for
recommender systems. In Proceedings of the 7th ACM conference on Recommender
systems. 493–494.

[13] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1509.
02971

[14] Yifei Ma, Balakrishnan Narayanaswamy, Haibin Lin, and Hao Ding. 2020.
Temporal-Contextual Recommendation in Real-Time. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2291–2299.

[15] Harrie Oosterhuis and Maarten de Rijke. 2020. Unifying Online and Counterfac-
tual Learning to Rank. arXiv preprint arXiv:2012.04426 (2020).

[16] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2018. Searching for Activation
Functions. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=Hkuq2EkPf

[17] Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja,
and Craig Boutilier. 2019. Caql: Continuous action q-learning. arXiv preprint
arXiv:1909.12397 (2019).

[18] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Mar-
tin A. Riedmiller. 2014. Deterministic Policy Gradient Algorithms. In Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014 (JMLR Workshop and Conference Proceedings, Vol. 32).
JMLR.org, 387–395. http://proceedings.mlr.press/v32/silver14.html

[19] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[20] Wenjin Wu, Guojun Liu, Hui Ye, Chenshuang Zhang, Tianshu Wu, Daorui Xiao,
Wei Lin, and Xiaoyu Zhu. 2018. EENMF: An End-to-End Neural Matching
Framework for E-Commerce Sponsored Search. CoRR abs/1812.01190 (2018).
arXiv:1812.01190 http://arxiv.org/abs/1812.01190

[21] Byoung-Tak Zhang and Young-Woo Seo. 2001. Personalized web-document
filtering using reinforcement learning. Applied Artificial Intelligence 15, 7 (2001),
665–685.

[22] Jianghong Zhou and Eugene Agichtein. 2020. RLIRank: Learning to Rank with Re-
inforcement Learning for Dynamic Search. In Proceedings of The Web Conference
2020. 2842–2848.

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=Hkuq2EkPf
http://proceedings.mlr.press/v32/silver14.html
https://arxiv.org/abs/1812.01190
http://arxiv.org/abs/1812.01190

	Abstract
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Review of the Simulated Environment Model
	3.2 Our Model: The Improved Simulated Environment
	3.3 The DDPG Reinforcement Learning Agent

	4 Experiment
	5 Conclusion
	References

